
10450 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 14, 2021

Hyperspectral Image Classification Based on
Dual-Branch Spectral Multiscale Attention Network
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Abstract—In recent years, convolutional neural networks
(CNNs) have been widely used in hyperspectral image classification
and have achieved good performance. However, the high dimen-
sions and few samples of hyperspectral remote sensing images tend
to be the main factors restricting improvements in classification
performance. At present, most advanced classification methods
are based on the joint extraction of spatial and spectral features.
In this article, an improved dense block based on a multiscale
spectral pyramid (MSSP) is proposed. This method uses the idea
of multiscale and group convolution of the convolution kernel,
which can fully extract spectral information from hyperspectral
images. The designed MSSP is the main unit of the spectral dense
block (called MSSP Block). Additionally, a short connection with
nonlinear transformation is introduced to enhance the representa-
tion ability of the model. To demonstrate the effectiveness of the
proposed dual-branch multiscale spectral attention network, some
experiments are conducted on five commonly used datasets. The
experimental results show that, compared with some state-of-the-
art methods, the proposed method can provide better classification
performance and has strong generalization ability.

Index Terms—Classification, convolutional neural network
(CNN), hyperspectral image, multiscale attention, multiscale
spectral pyramid (MSSP).

I. INTRODUCTION

IN RECENT years, with the rapid development of imaging
technology, remote sensing images have been applied in

many fields. Hyperspectral images have high spatial resolution
and rich spectral bands [1], which makes them widely used
in many fields, such as earth exploration [2], environmental
monitoring [3], and ecological science [4].

Hyperspectral image classification is one of the important
applications of hyperspectral technology. Hyperspectral images
contain rich spatial and spectral information, and fully extracting
the spatial and spectral features of images can effectively im-
prove the classification performance of hyperspectral images.

Manuscript received August 31, 2021; accepted October 7, 2021. Date of
publication October 14, 2021; date of current version October 27, 2021. This
work was supported in part by the National Natural Science Foundation of China
under Grants 41701479 and 62071084, in part by the Heilongjiang Science
Foundation Project of China under Grant LH2021D022, and in part by the
Fundamental Research Funds in Heilongjiang Provincial Universities of China
under Grant 135509136. (Corresponding author: Cuiping Shi.)

Cuiping Shi, Diling Liao, Yi Xiong, and Tianyu Zhang are with
the Department of Communication Engineering, Qiqihar University, Qiqi-
har 161000, China (e-mail: scp1980@126.com; 2020910228@qqhru.edu.cn;
2018132231@qqhru.edu.cn; 2019910178@qqhru.edu.cn).

Liguo Wang is with the College of Information and Communication Engi-
neering, Dalian Nationalities University, Dalian 116000, China (e-mail: wang-
liguo@hrbeu.edu.cn).

Digital Object Identifier 10.1109/JSTARS.2021.3119413

Therefore, many methods of extracting spatial and spectral
features have been proposed. In the past, some linear-based
classification methods were proposed, such as discriminant con-
straint analysis [5], PCA [6], and balanced local discrimination
methods [7]. However, due to the weak representation ability
of the linear method, the classification effect is poor when
applied to more complex problems. To improve the classification
performance, some classification methods based on manifold
learning have been proposed, such as the sparse and low rank
near-isometric linear embedding method [8], and the semisuper-
vised sparse manifold discriminative analysis method [9].

For image classification, many representative classifiers have
been proposed; for example, k-nearest-neighbor classifier based
on unsupervised clustering [10], semisupervised logistic regres-
sion classifier for high-dimensional data [11], extreme learning
classifier with very simple structure [12], sparse-based represen-
tation classifier [13], and SVM [14]. Among them, the classifier
based on the SVM has obvious advantages in solving small
sample size and high-dimensional problem, and it has shown
great potential in HSI classification [15].

Hyperspectral images contain abundant information. How-
ever, the traditional machine learning methods cannot fully mine
the features of hyperspectral images, and only extracted the
shallow features of images, resulting in the poor classification
effect and weak generalization ability of hyperspectral images.
With the rapid development of image processing technology and
the improvement in hardware performance, some deep learning
methods that can learn deeper features have been proposed.
Due to the advanced nature of the deep learning technology,
it has been widely used in the field of image processing. In
particular, some research works have proved that deep learning
technology also has good performance in hyperspectral image
classification [16]. To improve the traditional manual spatial–
spectral learning method, Tao et al. [17] proposed a method
based on stacked sparse autoencoders (SAE), which adaptively
learns appropriate feature representations from unlabeled data,
and finally uses SVM classifier for classification. In [18], a deep
belief network (DBN) was proposed to improve the classification
accuracy through spatial–spectral localization and classification.
However, the SAE and DBN networks have some complete
connection layers with a large number of parameters, and the
spatial flattening operation also destroys the spatial information
of images.

At present, many deep learning methods have been applied
to hyperspectral image classification, and have achieved good
classification performance. Recurrent neural networks (RNNs)
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are widely used in image classification because of their good
data modeling ability [19]–[21]. However, the feature extraction
effect of RNNs is not very good in the case of small samples,
which does not make the classification performance ideal. To
alleviate this problem, a generative adversarial network is pro-
posed, which can generate high-quality data samples [22]–[29].
Similarly, graph convolutional neural networks, which are mod-
eled by graph structure data, can alleviate the problems caused
by small samples in a semisupervision way [30], [31].

Inspired by human vision, a CNN can provide better clas-
sification performance for hyperspectral images by using the
weight-sharing method of local connection to train the model.
In the study of hyperspectral image classification, most methods
are based on spatial spectral joint feature extraction [32]. In [33],
Zhang et al. proposed a dual-channel CNN. One channel uses a
1-D CNN to extract the spectral information of the image, and the
other channel uses a 2-D CNN to extract the spatial information
of the image. Finally, the spectral information and spatial infor-
mation extracted by the two channels are fused and classified
by a regression classifier. To reduce the number of parameters,
Chen et al. [34] proposed a 3-D CNN method to extract deep
spatial and spectral information at the same time. In [35], Mei
et al. proposed a new deep learning method C-CNN to explore
the feature-learning ability of a five-layer CNN in hyperspectral
classification, i.e., integrating spatial context information and
spectral information into C-CNN, to improve the representation
ability of spatial and spectral information. Although CNN-based
methods can effectively extract features, to avoid overfitting,
the fine-tuning of parameters usually requires a large number
of data samples. Therefore, a densely connection network [36]
is proposed, which can improve the generalization ability of
the network for hyperspectral images. To improve the learning
ability of the deep network and avoid the problems of gradient
explosion and gradient dissipation, He et al. [37] designed
a deep residual network (ResNet), which can make the deep
network layer and the shallow network layer perform identity
mapping. To jointly learn the spatial and spectral information of
hyperspectral images, Zhong et al. [38] proposed a supervised
residual network (SSRN) based on spatial and spectral resid-
uals, but the training time is long. Wang et al. [39] proposed
a fast and dense spatial spectral convolution network, which
can effectively reduce the data dimension. In [40], Paoletti et
al. proposed a residual pyramid network (PyResNet), which
can gradually increase the feature mapping dimension between
layers while balancing the workload of all units. The features
extracted from hyperspectral images inevitably contain a lot of
redundant information. Inspired by human visual attention, Juan
et al. [41] proposed a model combining A-ResNet and attention,
which can identify the most representative features in the data
from the visual perspective. Similarly, Woo et al. [42] proposed
a convolutional attention module by combining the ResNet
network with the attention module of a feedforward CNN, which
can retain useful features and discard useless features. Finally, a
good classification result of hyperspectral images is obtained. To
improve the classification performance of hyperspectral images,
the multiscale strategy is also an effective way [43]–[45]. Wu
et al. [46] proposed a multiscale spatial spectral joint network.

Similarly, Pooja et al. [47] combined the multiscale strategy with
a CNN network to achieve high classification accuracy.

In recent years, attention mechanism is widely used in com-
puter vision and natural language processing [48]–[50]. Wang
et al. [51] embedded the squeeze and-excitation [52] module into
ResNet for HSI classification. To extract more discriminative
spatial and spectral features, Ma et al. [53] proposed a dual-
branch, multiattention network (DBMA), which uses different
attention mechanisms to extract the spatial and spectral features
of hyperspectral images by dual branches, and then fuse these
features for classification. The experimental results show that the
DBMA network has a good performance in hyperspectral clas-
sification. For further research, Li et al. proposed a dual-branch
and dual-attention mechanism network (DBDA) [54] based on
a new dual attention network [55], [56], which has good clas-
sification performance in the case of small number of training
samples. Roy et al. [57] proposed a Hybrid-SN method, which
combines 2-D CNN and 3-D CNN, and 3-D CNN is used to ex-
tract the spectral features of the image, whereas 2-D CNN is used
to extract the spatial features, and good classification accuracy
is obtained. Due to the correlation between noise and spectral
band, a CNN with fixed receptive field cannot enable neurons
to effectively adjust RF sizes and cross-channel dependencies.
Roy et al. [58] proposed an attention-based adaptive spectral–
spatial kernel improved residual network (A2S2K-ResNet) with
spectral attention to capture discriminative spectral and spatial
features for HSI classification in an end-to-end training way.

Compared with traditional machine learning methods, the
above methods have more advantages in hyperspectral image
classification, and have strong generalization ability. However,
improving the classification performance of hyperspectral im-
ages is still a major challenge in the case of small samples. In
the process of hyperspectral image extraction, a large amount
of redundant information and the imbalance between different
labeled samples greatly reduce the classification performance of
hyperspectral images. Therefore, how to obtain more features in
the case of limited samples is still worthy of in-depth study.

To obtain more image features with limited samples, a dual-
branch multiscale spectral attention network (DBMSA) is pro-
posed, which is based on Dense Net and utilizes multiscale
convolution kernels in the spectral branch to extract features
of different levels of hyperspectral images. In addition, the
attention mechanism is introduced in both the spectral branch
and the spatial branch to learn more representative features, so
as to enhance the representation ability of specific area of the
image.

The main contributions of this article are as follows.
1) Due to the limitations of single-scale convolution kernels,

this article proposes a structure of MSSP for the first time.
This structure utilizes convolution kernels with different
sizes to obtain features of different neighborhoods of the
image, which makes the extracted features more com-
prehensive. Finally, the extracted feature information is
fused to help improve the classification performance of
hyperspectral images.

2) To strengthen the connection of deep feature information,
MSSPs are densely connected, that is, the output of the
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Fig. 1. Overall structure of the proposed DBSMA.

previous layer is used as the input of all subsequent layers.
MSSP Block is conducive to a fuller feature extraction of
hyperspectral images.

3) To reduce the amount of training parameters, group convo-
lutions with different sizes are used for different branches
of the MSSP, which effectively improve the classification
performance.

4) The MSSP Block is the first attempt at spectral branching
in hyperspectral classification. Experiments show that this
method can provide excellent classification performance
and has good generalization ability.

The rest of this article are organized as follows. Section II
introduces the structure of the DBSMA network in detail. Sec-
tion III provides the classification results of the DBSMA network
on the four common datasets, and compares them with that of
some advanced methods. Section IV provides the conclusion.

II. METHODOLOGY

For the classification of hyperspectral images, the extraction
of the spatial and spectral features is very critical. In this article,
a DBMSA network is proposed. For spectral branches, spectral
features are extracted from the structure composed of three
densely connected MSSPs and a spectral attention mechanism.
For spatial branches, a dense block and a spatial attention

structure are used to extract spatial features in cooperation. The
following four parts will be introduced in detail: the overall
structure of DBMSA, spectral feature extraction strategy, spa-
tial feature extraction strategy, and nonlocal feature selection
strategy.

A. Structure of DBSMA

The proposed DBMSA model consists of an MSSP dense
connection module, a spatial dense connection block, a spectral
attention module and a spatial attention module, a fully con-
nected layer, a global average pooling layer, and a classifier.
The overall structure is shown in Fig. 1. The size of the input is
P ∈ Rp0×p0×bbands . To keep the size of the input cube and the
output cube unchanged, the zero filling strategy is adopted. To
avoid data explosion and gradient disappearance, BN + Mish
[59] is used as the normalization and activation function to stan-
dardize the input data. In particular, to extract key information
as much as possible, spectral attention and spatial attention are
utilized to improve the performance of the network. After the
output cube of the attention module passes through the dropout
layer and the global average pooling layer, it becomes a 1-D
vector. Then, the two output vectors of the spectral branch
and spatial branch attention are cascaded into a new vector.
The activation function is used to process the vector as the sum
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Fig. 2. Structure of pyramid convolution.

Fig. 3. Structure of grouped convolution.

of the probabilities of all elements is 1, and then it is classified
by the classifier.

B. Strategy for Extracting Spectral Features Based on MSSP

1) MSSP Structure: The structure of pyramid convolution is
shown in Fig. 2. For pyramid convolution, the size of convolution
filter remains unchanged. From the top to the bottom of the
pyramid, the depth of the filter is gradually increased. That is,
the filter can transition from a smaller receiving field to a larger
receiving field to obtain more complementary information.
A convolution filter with small scale can obtain detailed informa-
tion, whereas a filter with large scale can obtain global context
information. Therefore, different scale convolution kernels can
obtain hierarchical features of the image.

To better extract the spectral features and reduce the computa-
tional complexity of the model, randomly shuffled input data are
grouped and convolved in MSSP (i.e., the input feature map is
grouped in to 1, 2, 4, 8). Fig. 3 shows the case where the group is
equal to 2. Here, the four input feature maps are divided into two
groups. Compared with standard convolution, the complexity
of grouped convolution [60] is reduced. In particular, there are
two situations in grouped convolution: if it is divided into one
group (that is, not grouped), the calculation complexity of the
convolution is the same as that of the standard convolution;

on the contrary, as the number of grouping groups increases,
the computational complexity will become lower and lower.
Suppose the inputs are Ni feature maps with size H ×W × L,
and the size of the filter is 1× 1× k. Divide the input feature
maps into m groups, then each group of inputs will be Ni/m
cubes of size H ×W × L, with No/m convolution kernels of
size 1× 1× k. After grouped convolution, the output will be
No/m feature maps of size H ×W × L and the total number
of output feature maps is N0

m ·m (where Ni and N0 are the
number of input and output feature maps, and H,W , and L are
the height, width, and number of channels, respectively). Among
them, the calculation times of standard convolution and grouped
convolution are

f = k2 × L×W ×H × l (1)

F =

(
k2 × L

m
×H ×W × l

m

)
×m (2)

where f represents the number of calculation required for
standard convolution, F represents the number of calculation
required for grouped convolution, k2 is the space size of the
filter,L represents the number of bands of the input feature map,
l represents the number of bands of the output feature map, m
is the number of input groups, and H and W are the height and
width of the output feature map, respectively. Obviously, f < F ,
that is, the calculation times of grouped convolution is only 1/m
of that of standard convolution.

Fig. 4 shows the proposed MSSP structure. The input size
is H ×W × L. To extract the spectral information effectively,
the convolution unit of 1× 1× 1 is used to expand the input
size. Different sizes of convolution kernels are used for spectral
feature extraction. In the branches of different scale convolution
kernels, the input is divided into one group, four groups, and
eight groups, respectively, for group convolution, and the output
features of different branches are fused. However, when the
number of network layers increases, network degradation may
occur, leading to unsatisfactory model training results. There-
fore, after nonlinear convolution, skip connection is utilized to
realize residual mapping, so as to avoid gradient disappearance
and explosion, that is

p(x) = σ(x) + q(x) (3)

where σ(x) is the output of nonlinear residual structure, q(x) is
the output of multiscale convolution structure, and p(x) is the
output after the model of MSSP.

2) Dense Connection Block Based on MSSP Structure (MSSP
Block): To facilitate the flow of information between layers,
three MSSPs are further densely connected, as shown in Fig. 5.
The input of the ith layer is the sum of the output of the (i− 1)th
previous layer, and the relationship between input and output of
MSSP Block can be represented as

yi = h([x1, x2, . . . , xi−1]) (4)

where yi represents the output of the ith MSSP, h(·) represents
the function of MSSP, and [x1, x2, . . . , xi−1] represents the
output of the previous (i− 1) MSSP Block.
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Fig. 4. Proposed MSSP structure.

Fig. 5. MSSP Block.

Fig. 6. Spatially densely connected blocks.

Assuming that the input is P ∈ RH×W×L, the output after
each MSSP is Q feature maps with the same size as the input.
After i MSSP Block, the linear relationship between the total
number of output feature maps Qi and the number of output
feature maps Q of each MSSP can be represented as

Qi = L+ (i− 1)Q (5)

where Qi represents the total number of output feature maps
after i MSSP Block, L is the number of bands of the input
map feature, and Q represents the number of output after each
MSSP.

C. Strategy for Extracting Spatial Features

It is difficult to extract the deep spatial features of hyper-
spectral images by a shallow neural network. To establish the
connection relationship between the different layers, shallow
and deep layers are connected by skip, so that the layers are
densely connected, which can not only facilitate the information
flow of information in each layer, but also avoid information
loss.

The processing of the dense block in the spatial branch is
similar to that of the MSSP Block in the spectral branch. The
structure of the spatial branch dense blocks is shown in Fig. 6.
The relationship between the input and output of the spatially
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Fig. 7. Spectral attention module.

densely connected block can be represented as

xi = H([x1, x2, . . . , xi−1]) (6)

where H(·) is the function of spatially dense connection, and
[x1, x2, . . . , xi−1] is the output of previous (i− 1) layers. xiis
the number of feature maps in the ith layer.

Suppose that the input is x0 feature maps with size P ∈
Ra×a×b0 . To avoid the gradient explosion of the input data, BN is
used to normalize the data, Mish is the activation function of the
input data, the size of the filter is r × r × 1, and the total number
of output feature mapsx of the spatially dense block is calculated
in the same way as that of multiscale pyramid convolution dense
blocks of spectral branches.

D. Strategies for Nonlocal Feature Selection Attention and
Fusion Mechanism

The attention mechanism can not only automatically learn
important spectral and spatial features, but also suppress use-
less information in the spectral and spatial. Because it helps
to provide good classification effect in image classification,
attention mechanism has been widely used in the field of image
processing. In DBMSA, the attention mechanism is utilized in
the spectral branch and spatial branch, respectively. According
to the MSSP Block described in Section II-B and the spatial
dense block introduced on Section II-C, the spectral and spatial
features of HSI are extracted and fused. The process of attention
mechanism in a DBSMA network is described in detail as
follows.

The structure of the spectral attention mechanism is shown in
Fig. 7. It can be seen that, in the spectral branch, the attention
mechanism generates attention maps by understanding the rela-
tionship between channels and emphasizing the important parts
of the feature map. Assuming that the input size is P ∈ Rs×s×c

(where s× s is the space size of input and c is the number
of input bands), through matrix multiplication and activation
function, the weighted map with channel attention is obtained.
On the one hand, the activation function normalizes the data and
organizes the attention map into a probability distribution with
the weighted sum of each channel being 1. On the other hand, the
activation function can be used to highlight the more important
parts. Let Xn(n = 1, 2, . . . , c) be the channel of the input patch,

and after passing through activation function layer, the spectral
attention map G ∈ Rc×c is

gji =
exp(XT

i ·Xj)∑
∀j exp(X

T
i ·Xj)

(7)

where gji is the weight coefficient of the ith channel to the jth
channel, that is, the importance of the ith channel to the jth
channel. Let α be the attention parameter (if α = 0, it means
that operation without attention mechanism), then the output of
the spectral attention mechanism is

Yj = α
∑

∀j gjiXj +Xj (8)

where Yn(n = 1, 2, . . . , c) is the n-channel feature map of Y ∈
Rs×s×c.

The structure of the spatial attention mechanism is shown
in Fig. 8. It can be seen that the process of the spatial attention
mechanism is similar to that of the spectral attention mechanism.
Different from the spectral attention mechanism, the input X is
convoluted with the convolution kernel of size r × r × b, and
three new feature maps A, B, and C are obtained, respectively.
Here, {A,B,C} ∈ Rs×s×c. Next, A, B, and C are transformed
into 2-D matrices with size ss× c (where ss represents the
number of pixels). Then, multiply B and AT, and obtain the
spatial attention map E ∈ Rss×ss after the softmax layer, that is

eji =
exp(Ai ·Bj)∑
∀j exp(Ai ·Bj)

(9)

where ejiis the weight coefficient of the ith pixel to the jth
pixel, that is, the importance of the ith pixel to the jth pixel.
Then, multiply the matrices C and ET, and connect the result
to the original input X through the residual connection, and the
final output is

Zj = β
∑

∀j ejiCj +Xj (10)

where Zn(n = 1, 2, . . . , ss) is the value of the output cube Z ∈
Rs×s×c at the spatial positionn, and β is the attention parameter.

III. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, we first introduce the datasets used in the
experiment, then give the hyperparameter settings of the network
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Fig. 8. Spatial attention module.

and detailed analysis of the parameters, and finally analyze the
performance of the proposed method and compare it with other
advanced methods. To quantitatively analyze the DBMSA, three
commonly used quantitative indicators are adopted, namely
overall accuracy (OA), average accuracy (AA), and Kappa co-
efficient (Kappa). To avoid data bias caused by randomness,
each experiment is repeated 30 times, and the average of these
experimental results is taken as the final result.

A. Hyperspectral Dataset

In this part, we will introduce five datasets in detail, namely
Indian Pine (IN), University of Pavia (UP), Kennedy Space
Center (KSC), Salinas Valley (SV), and University of Houston
(HS). Fig. 9 shows the real image, false color image, and class
information of each data in the dataset.

1) IN: The Indian pine dataset is a hyperspectral image
acquired by an airborne visible infrared imaging spec-
trometer in the northwestern part of Indiana, USA. The
image spatial size is 145×145, the number of bands is 220,
and the wavelength range is 200–2400 nm. The spectral
and spatial resolutions are 10 nm and 20 m, respectively.
Except for background pixels, there are generally 10 249
spatial pixels used for experiments. There are 16 true types
of ground objects, but, because some of them have fewer
data labels, only take 9 of the 16 categories. Because 20
are unavailable, the experiment only takes the remaining
200 bands out of the 220 bands for research.

2) UP: This dataset is used for image acquisition through a
reflection optical system imaging spectrometer. The size
of the image spatial is 610×340, and the spatial resolution
is 1.3 m. Among them, the dataset is divided into 9
categories. 115 bands and 12 noise bands are removed,
leaving 103 usable bands.

3) KSC: This dataset was obtained by an AVIRIS sensor in
Florida in 1996, with a spatial size of 512×614 and a
spatial resolution of 18m; in addition, the image consists
of 13 feature categories and 176 bands.

4) SV: This dataset is a hyperspectral image obtained through
an AVIRIS sensor in the United States. The spatial size of
the image is 512×217, and the spatial resolution is 1.7 m.

Among them, there are 16 categories of ground objects and
224 bands, but 20 water absorption bands were removed,
and the remaining 204 bands were used for hyperspectral
image classification experiments.

5) HS: The Houston 2013 (HS) dataset is the competition data
of the 2013 GRSS Data Fusion contest, which describes
the landscape of Houston University and its surrounding
areas. The size of the dataset is 349× 1905, and the spatial
resolution is 2.5 m per pixel. The dataset contains 144
spectral bands and 15 kinds of surface features.

B. Experimental Setup

During the experiment, the learning rate setting ranges are
0.001, 0.005, 0.0001, 0.0005, and 0.00005. Through multiple
experiments on each learning rate, the best learning rate in
the four datasets is 0.0005; the number of iterations of the
experiment is set to 200 and batch size to 16. The hardware
platform used in the experiment is Intel(R) Core(TM) i7-9750H
CPU, NVIDA GeForce GTX1060 Ti GPU and 8GB memory.
The software environment is CUDA 10.0, pytorch 1.2.0 and
python 3.7.4. In the experiment, the method in this article is
compared with classic classifiers and newer network models in
hyperspectral classification, including SVM, SSRN, CDCNN,
PyResNet, DBMA, DBDA, Hybrid-SN, and A2S2K-ResNet.
In the experiment, OA, AA, and Kappa are used as indicators
of model performance, and the average of the results of 30
experiments is taken. In the case of small sample data, the
experimental results show that the proposed network model has
better classification performance than other advanced methods
and has better generalization ability.

C. Parameter Analysis

1) For the proposed DBMSA method, the feature extrac-
tion methods of spectral branch and spatial branch are
different. To avoid the infection of spectral and spatial
information, two branches extract spectral and spatial
information, respectively. In addition, in the five datasets
of IN, UP, KSC, SV, and HS, 3%, 0.5%, 5%, 0.5%, and
2% of the data were randomly selected as training samples,
and the remaining data were used as test samples.
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Fig. 9. Real features and false color maps of four common datasets, and the number of available samples.
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Fig. 10. Classification performance of different numbers of MSSP dense connections. (a) IN. (b) UP. (c) KSC. (d) SV (%).

TABLE I
FOR THE FOUR DATASETS, THE TIME CONSUMED BY TRAINING AND TESTING UNDER DIFFERENT COMBINATIONS OF MSSP NUMBERS (S)

2) The influence of the number of dense connections of
MSSP on classification accuracy: In the MSSP Block,
the output of the previous MSSP affects the input of the
convolution of the next MSSP. Therefore, the classification
performance of the network will be affected by the number
of MSSP dense connections. When the numbers of MSSP
dense connections are 2, 3, and 4, the experimental results
are shown in Fig. 10. It can be seen from Fig. 10 that for the
IN, UP, and KSC datasets, the OA, AA, and Kappa values
obtained by densely connected 2 MSSP Block and densely
connected 4 MSSP Block are all lower than those of the
densely connected blocks of 3 MSSP Block. Moreover, the
classification accuracy of the densely connected blocks of
3 MSSP Block on the four datasets is all above 93.5%.
For the SV dataset, although the OA and Kappa values ob-
tained by the dense connection of 4 MSSP Block are 0.26%
and 0.29% more than those obtained by the dense connec-
tion of 3 MSSP Block, the training time required is more
than one-third times, as shown in Table I. According to the
above analysis, densely connected blocks consisting of 3
MSSP Block can extract image features more effectively.

3) The effect of the combination of filters in MSSP on clas-
sification accuracy: in HSI classification, the size of the
filter of CNN is directly related to the size of the receiving
field, and the context information and detailed features of
the image affect the classification accuracy. To reduce the

spatial dimension, the sizes of the convolution filters are
usually selected as 1×1×3, 1×1×5, 1×1×7, 1×1×9, and
1×1×11. However, as the size increases, the number of
parameters also increases. Therefore, the use of a small-
scale filter is relatively widespread. To further explore
the influence of the combination of pyramid multiscale
filter on the classification performance, the above several
convolution kernels are grouped according to the pyramid
multiscale principle. Different combinations of multiscale
filters are used to obtain different classification accuracy.
The experimental results are shown in Table II. Among
them, 1×1×3, 1×1×5, and 1×1×7 have the highest
classification accuracy in the IN, UP, and KSC datasets.
Although this combination method is not the highest in the
classification accuracy of the SV dataset, its OA is only
0.24% lower than the highest. In addition, the multiscale
combination of 1×1×5, 1×1×7, and 1×1×9 performs
poorly in other datasets; that is, their generalization ability
is weak. Therefore, the combination of pyramid multiscale
filters 1×1×3, 1×1×5, 1×1×7 can provide the best clas-
sification performance.

D. Experimental Results and Analysis

To verify the method proposed in this article, according to the
parameter settings in Section III-B, the DBMSA is tested on four
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TABLE II
INFLUENCE OF THE SIZE COMBINATION OF THE MULTISCALE CONVOLUTION KERNEL IN MSSP ON THE CLASSIFICATION ACCURACY (%)

The bold entities means that this method has the best result of the comparison methods.

Fig. 11. Classification maps on the IN dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN. (i)
A2S2K-ResNet. (j) Proposed.

Fig. 12. Classification maps on the UP dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN.
(i) A2S2K-ResNet. (j) Proposed.

datasets. The proposed DBMSA method is compared with some
classical and state-of-the-art classification methods, i.e., SVM,
SSRN, CDCNN, PyResNet, DBMA, DBDA, Hybrid-SN, and
A2S2K-ResNet.

1) Experiment 1: Figs. 11 –15 show the comparison of clas-
sification results of different methods on five datasets,
respectively. It can be seen from Figs. 11–15 that there
is a lot of noise in the classification results based on
SVM, and the classification effect is not ideal. Compared
with the SVM method, CDCNN can provide a better
classification performance by exploring the optimal local
spatial–spectral context dependence. Compared with the

CDCNN method, PyResNet and SSRN extract spatial–
spectral features through the deep structure of residual
connection, and the classification results are better. To
fully extract the spatial–spectral features and avoid the mu-
tual interference of spatial–spectral information, DBMA
and DBDA use two branches to extract the spatial–spectral
features of hyperspectral images separately, and achieve a
good classification effect. The visual images obtained by
HybridSN under the end-to-end deep learning framework
are relatively smooth and less noisey. By comparison,
the visual images obtained by A2S2K-ResNet are coarse.
However, the DBMSA not only learns spectral features
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Fig. 13. Classification maps on the KSC dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN.
(i) A2S2K-ResNet. (j) Proposed.

Fig. 14. Classification maps on the SV dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN.
(i) A2S2K-ResNet. (j) Proposed.

Fig. 15. Classification maps on the HS dataset. (a) Real object map. (b) SVM. (c) SSRN. (d) CDCNN. (e) PyResNet. (f) DBMA. (g) DBDA. (h) Hybrid-SN.
(i) A2S2K-ResNet. (j) Proposed.

through convolution kernels with different size in spectral
branches, but also improves classification accuracy in the
case of small samples through the attention mechanism.
Thus, compared with other methods, the obtained classi-
fication maps are more accurate and smoother.

The classification results of SVM-based and CNN-based
methods are shown in Tables III–VII. It can be seen that, the
lowest classification accuracy obtained by SVM, and for the ad-
vanced methods, namely SSRN, PyResNet, DBMA, and DBDA
methods, the classification accuracy of the DBDA method
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TABLE III
CLASSIFICATION RESULTS OF IN DATASET USING 3% TRAINING SAMPLES (VALUE ± STANDARD DEVIATION)

The bold entities means that this method has the best result of the comparison methods.

TABLE IV
CLASSIFICATION RESULTS OF THE UP DATASET USING 0.5% TRAINING SAMPLES (VALUE ± STANDARD DEVIATION)

The bold entities means that this method has the best result of the comparison methods.

TABLE V
CLASSIFICATION RESULTS OF THE KSC DATASET USING 5% TRAINING SAMPLES (VALUE ± STANDARD DEVIATION)

The bold entities means that this method has the best result of the comparison methods.
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TABLE VI
CLASSIFICATION RESULTS OF SV DATASET USING 0.5% TRAINING SAMPLES (VALUE ± STANDARD DEVIATION)

The bold entities means that this method has the best result of the comparison methods.

TABLE VII
CLASSIFICATION RESULTS OF HS DATASET USING 2% TRAINING SAMPLES (VALUE ± STANDARD DEVIATION)

The bold entities means that this method has the best result of the comparison methods.

based on dual branch and dual attention is slightly higher
than that of SSRN, PyResNet, and DBMA. It is worth noting
that Hybrid-SN performs relatively well only on SV datasets,
but poor on other datasets. Similarly, although the AA of the
latest A2S2K-ResNet method is slightly higher than that of
the proposed method on KSC dataset, its overall performance
is always poor on other datasets. Compared with the above
methods, the proposed method has the highest classification
accuracy. In the four datasets, the OA obtained by the proposed
method is 1.81%, 1.01%, 1.73%, and 2.54% higher than the
OA obtained by the DBDA method, respectively. In particular,
DBMSA achieved 100% classification accuracy in C9 (Spartina

marsh) and C10 (Cattail marsh) in the KSC dataset, and C2
(Brocoil_green_weeds_2) in the SV dataset. Figs. 11–15 and
Tables III–VII prove the effectiveness of the proposed method.

From Tables III–VII, it can be seen that the amount of param-
eters and running time of the proposed network are moderate.
Compared with PyResNet and Hybrid-SN, the amount of pa-
rameters of the proposed method is greatly reduced. Compared
with those of DBMA and DBDA, the running time is similar,
but our method can provide a superior ability of classification
performance.

1) Experiment 2: Fig. 16 compares the convergence of veri-
fication accuracy and loss on the KSC verification set of
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Fig. 16. Comparison of the loss and verification accuracy curves of each method on KSC dataset. (a) Relationship between verification loss and epochs.
(b) Relationship between verification accuracy and epochs.

Fig. 17. Comparison of confusion matrices of different methods on KSC dataset. (a) SSRN. (b) DBDA. (c) Proposed.

SSRN, DBDA, and the proposed method over 80 epochs.
It can be seen that compared with SSRN and DBDA
methods, the proposed method converges faster, and it
has converged in about 30 generations. Since the SSRN
network is deeper, the convergence speed is slower. For
DBDA, although the model has fewer parameters, it has
a double-branch structure, which makes the convergence
of this method slower.

To further verify the effectiveness of the proposed method,
the confusion matrices obtained by the above three method on
KSC dataset are compared, and the experimental results are
shown in Fig. 17. For SSRN method, the classification errors
of Slash pin and Oak/Broadleaf are relatively large. Among
them, the confusion ratio of true category Slash Pin with CP
hammock and Oak/Broadleaf is 6% and 7%, respectively, and
the classification error rate of real category Oak/Broadleaf is
26%. For DBDA, CP hammock, Slash pine, and Oak/Broadleaf,
all have some confusion, and the classification accuracy of
Slash pine and Oak/Broadleaf is poor, with only 77% and 75%
accuracy. Compared with the above two methods, the classi-
fication accuracy of the proposed method is 100% for most
categories, and the classification accuracy of Slash pine and
Grass-pasture-mowed can reach more than 94%. This shows that
the proposed method still has good classification performance
for those easily confused categories.

1) Experiment 3: This experiment compares the classifica-
tion performance of different methods under different

training sample ratios. For the datasets of IN, UP, KSC, and
SV, the training ratios of each dataset are set to 1%, 5%,
10%, 15%, and 20%, and SVM, CDCNN, SSRN, PyRes-
Net, DBMA, DBDA, Hybrid-SN, A2S2K-ResNet, and the
proposed DBMSA method are tested. The experimental
comparison results are shown in Fig. 18. It can be seen that
the classification performance of CDCNN and SVM is rel-
atively poor when there are few training samples. For the
four datasets, the best overall classification performance
is achieved by the proposed DBSMA method. Although
the classification accuracy of Hybrid-SN is slightly higher
than that of the proposed DBSMA method on SV datasets,
the generalization ability of this method is poor. Compared
with SSRN, PyResNet, and DBMA, A2S2K-ResNet can
achieve relatively good results as a whole, but this method
performs poorly in the case of fewer samples. With the in-
crease in the number of samples, each method can achieve
higher classification accuracy, but the classification accu-
racy of the proposed DBSMA method is still the highest. It
proves that the proposed method has better generalization
ability.

2) Experiment 4: To explore the influence of the input spatial
size on the experiment, many experiments with the spatial
size of 5×5, 7×7, 9×9, 11×11, and 13×13 have been
performed. The experimental results are shown in Ta-
ble VIII. It is worth noting that the classification accuracy
first increases and then decreases with the increase in size.
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Fig. 18. Comparison results of the classification performance of different methods at different training sample ratios on the IN, UP, KSC, and SV datasets.
(a) Classification performance of different methods on the IN dataset. (b) Classification performance of different methods on the UP dataset. (c) Classification
performance of different methods on the KSC dataset. (d) Classification performance of different methods on the SV dataset.

When the spatial size is 9×9, the classification accuracy
is the best. Therefore, the spatial size of 9×9 is adopted
as the input size of the proposed framework.

1) Experiment 5: In addition, we extensively analyzed the
different effects of the proposed MSSP block and at-
tention mechanism. In this part, a series of comparative
experiments are carried out to illustrate the advantages of
MSSP block. Specifically, MSSP blocks are equipped with
grouping and without grouping. Table IX shows the clas-
sification results of different module combinations on five
datasets. It can be observed that the best performance is
obtained by combining the grouped MSSP block with the
two attention mechanisms, which shows that the scheme
has general advantages for all datasets. The classification
accuracy of MSSP Block with grouping is improved by
10.37%, 4.61%, 2.89%, 7.22%, and 3.54%, respectively,
on IN, UP, KSC, SV, and HS datasets compared with those
of other schemes without MSSP Block.

IV. CONCLUSION

This article proposes a dual-branch spectral multiscale atten-
tion network for hyperspectral image classification. It consists

of two branches, i.e., spectral branch and spatial branch. In the
spectral branch, the structure of the MSSP and the spectral atten-
tion mechanism is designed to extract the spectral information.
In the spatial branch, the structure of the dense connection block
and the spatial attention mechanism is utilized to extract the
spatial information. In addition, the features obtained from the
two branches are fused and classified. The proposed MSSP of
the DBMSA network can obtain the spectral features of different
receptive fields, which is beneficial to improve the classification
performance of hyperspectral images. The experimental results
show that the network model proposed in this article has a good
classification performance and strong generalization ability. In
future research, we plan to further improve the DBMSA method
to more effectively extract the features of hyperspectral images
and reduce the running time of it.
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